2025/10/16 10:09 1/4 Ladder Process on Netzer

Ladder Process on Netzer

The upcoming Release 1.5 will have support for custom computations and serial drivers directly
executed on Netzer. The choosen programming dialect is % Ladder _logic. The IDE for programming
will be Idmicro. This article will cover the progress of the implementations. The final feature set is not
completed yet.

Netzer memory organization

Runtime image

Runtime images are actually interpreted.
The interpreter is entirely written in Assembler for runtime issues.
The reasons for interpretation:

e Easier implementation

e Smaller runtime images

e Security issues (images can be uploaded via Netzer webpage).

* The images can be stored anywhere beyond flash also EEPROM, SD card or SRAM would be
possible.

At the moment, the runtime image is stored in a 2K flash memory area in the bootloader. The
interpreter images stay persistent even during firmware updates. The syntax (opcodes and
parameters) is adopted from Idmicro but is optimized for space and runtime issues.

The translation from Idmicro interpreter code to Netzer opcode files is done via free available IDE
extension from MoBaCon (see below).

The translator also integrates some meta data (project name, modification date, found opcodes, ...)
which is displayed on Netzer web interface after upload.

The prepared image can be uploaded via Netzer web interface or with command line tools like curl.
For custom implementations a preloaded image can be integrated in the firmware image.

After loading or when restarting Netzer the image is always checked for validness and consistency.

Register areas (PABs)

Adopted from Idmicro the runtimes knows about two data types: boolean (Width: Bit) and signed
integer (width: 16 bit).

There are two different register areas (called PAB): common PAB and IO PAB.

MoBaCon - http://mobacon.de/dokuwiki/

https://en.wikipedia.org/wiki/Ladder_logic
https://en.wikipedia.org/wiki/Ladder_logic
http://www.cq.cx/ladder.pl

Last update: 2025/06/11 20:42 en:netzer:process http://mobacon.de/dokuwiki/doku.php?id=en:netzer:process

Common PAB

This PAB is a real SRAM area in the Netzer space. The size is 128 bytes. Therefore 64 integer or 1024
bit variables can be stored. The common PAB is used as scratch area. The process has exclusive
access, no other Netzer software module can change the common PAB. Integer and bit variables
share the same address area.

10 PAB

This PAB is a virtual SRAM area. The IO PAB is divided into integer and bit variables area. Unlike in
common PAB integer and bit variables do not share the same address area. For communication
between bit and integer areas a copying via the common PAB can be used.

Network interface

For communication between the network and the process a special SRAM area is introduced (network
variables). There are 8 integers available in each direction (address 0x10-0x17).

Receiving data from network Each time the network writes new data, the corresponding mailbox flag
in the bit area is set. The process program can poll for this flag and read the value afterwards.
Reading clears the flag automatically.

Sending data to network Writing to one of the integers sends data to the network. Afterwards the
mailbox flag is set automatically. After the network interface has fetched the data, the mailbox flag is
cleared. The process should poll mailbox flags to prevent data loss.

Bit variables

Address Access Function Address |Access Function

0x00 RW 100 latch pin 0x80 RO |00 port pin
0x01 RW |01 latch pin 0x81 RO |01 port pin
0x02 RW 102 latch pin 0x82 RO 102 port pin
0x03 RW |03 latch pin 0x83 RO |03 port pin
0x04 RW 104 latch pin 0x84 RO |04 port pin
0x05 RW |05 latch pin 0x85 RO |05 port pin
0x06 RW TX latch pin 0x86 RO TX port pin
0x07 RW RX latch pin 0x87 RO RX port pin
0x08 RW SPI_CS latch pin 0x88 RO SPI_CS port pin
0x09 RW SPLINT latch pin 0x89 RO SPL_INT port pin
O0x0A RW SPI_CLK latch pin 0x8A RO SPI_CLK port pin
0x0B RW SPI_MI latch pin 0x8B RO SPI_MI port pin
0x0C RW SPI_MO latch pin 0x8C RO SPI_MO port pin
0x0D RW Serial TX FiFo ready / flush ||0x8D RO RTC time is synchronized
OXOE RW ﬁﬁ;ir?l RX FiFo data pending /

http://mobacon.de/dokuwiki/ Printed on 2025/10/16 10:09

2025/10/16 10:09 3/4 Ladder Process on Netzer

Address|Access|Function Address |Access|Function
O0xOF RW Netsocket TX FiFo ready /
flush

Netsocket RX FiFo data

0x10 RW pending / flush

Mailbox state for incoming
network variables

Mailbox state for outgoing
network variables

Start flag, TRUE for the first

0x90-0x97|RO

0x98-0x9F RO

0xAO RO process cycle after start.
Integer variables
Address |Access|Function
0x00 RW Latch - All 10 port latches in one integer (100 is at bit 0 and so on)
0x01 RW Edge counter (measured at 100)
0x02 RW Edge counter (measured at 101)
0x03 RW Edge counter (measured at 102)
0x04 RW PWM duty cycle / Impulse width (103)
0x05 RW PWM duty cycle / Impulse width (SPI_INT)
0x06 RW Top of serial FiFo (Reading: RX, Writing: TX)
0x07 RW Accessing top of net socket FiFo (Reading: RX, Writing: TX)

Reading delivers the current state of Netzer. Writing can be used for executing
commands, i.e. restarting.

0x10-0x17|RW Network variables
Read access: Delivers net socket state, write access: Executes commands on net

0x08 RW

0x18 RW

socket.
0x80 RO Process scratch register. After a division here the modulo result can be found.
0x81 RO Ports - All 10 port pins in one integer (100 is at bit 0 and so on)
0x82 RO ADC (I04) - Measured value as 10 Bit value
0x83 RO ADC (105) - Measured value as 10 Bit value

0x84 RO RTC Seconds

0x85 RO RTC Minutes

0x86 RO RTC Hours

0x87 RO RTC Day of the Week
0x88 RO RTC Day

0x89 RO RTC Month

0x8A RO RTC Year

0x8B RO Returns a random value.

0x8C RO Edge counter (measured at 100) - After reading the counter is cleared.
0x8D RO Edge counter (measured at 101) - After reading the counter is cleared.
0x8E RO Edge counter (measured at 102) - After reading the counter is cleared.

The most significant IP address byte of connected peer. Only valid if net socket
state is connected.

The second most significant IP address byte of connected peer. Only valid if net
socket state is connected.

0x90 RO

0x91 RO

MoBaCon - http://mobacon.de/dokuwiki/

http://mobacon.de/dokuwiki/doku.php?id=en:netzer:io#edge_counter_from_version_14_pro
http://mobacon.de/dokuwiki/doku.php?id=en:netzer:io#edge_counter_from_version_14_pro
http://mobacon.de/dokuwiki/doku.php?id=en:netzer:io#edge_counter_from_version_14_pro
http://mobacon.de/dokuwiki/doku.php?id=en:netzer:io#pwm-_and_pulse_generator_from_version_14_pro
http://mobacon.de/dokuwiki/doku.php?id=en:netzer:io#pwm-_and_pulse_generator_from_version_14_pro
http://mobacon.de/dokuwiki/doku.php?id=en:netzer:states
http://mobacon.de/dokuwiki/doku.php?id=en:netzer:io#adc_from_version_14_pro
http://mobacon.de/dokuwiki/doku.php?id=en:netzer:io#adc_from_version_14_pro
http://mobacon.de/dokuwiki/doku.php?id=en:netzer:io#edge_counter_from_version_14_pro
http://mobacon.de/dokuwiki/doku.php?id=en:netzer:io#edge_counter_from_version_14_pro
http://mobacon.de/dokuwiki/doku.php?id=en:netzer:io#edge_counter_from_version_14_pro

Last update: 2025/06/11 20:42 en:netzer:process http://mobacon.de/dokuwiki/doku.php?id=en:netzer:process

Address |Access Function

The second least significant IP address byte of connected peer. Only valid if net
0x92 RO)

socket state is connected.

The least significant IP address byte of connected peer. Only valid if net socket
0x93 RO .

state is connected.
IDE

The original Idmicro IDE is located here. MoBaCon has GPL compliant adjusted the IDE for some
special Netzer features on base of the official release 2.2. The IDE can directly generate Netzer
bytecode which later can be uploaded via the Netzer web interface. Furthermore we have extended
the project with a CMake toolchain, where building is also possible for different compilers and IDEs.
Also building on Linux is possible now.

A patch is posted at the Idmicro forums due the lack of version control - hopefully the patch is
integrated in future versions. In the mean time we have started a Idmicro project at github.

Executables (run with Windows and Linux Wine) can be downloaded from here:
_&, LDmicro executable for Windows OS (different languages)

Actually all the features of the IDE which can be compiled into interpretable code can be used.

The ADC, PWM and UART stuff is not supported by Idmicro for interpreter targets - but that is no
problem because the Netzer solves this via its 10 register set.

For that reason a simple naming convention must be considered.

10 PAB Mapping

Bit variables and integer variables can be mapped directly to 10 PAB integer using the @ operator.
To locate integer variable adc to the 10 location of ADC 4 for example simply rename it to adc@0O1.

To which PAB area (bit or integer) the operator finally maps depends on the variable type.

From:
http://mobacon.de/dokuwiki/ - MoBaCon

Permanent link:
http://mobacon.de/dokuwiki/doku.php?id=en:netzer:process

Last update: 2025/06/11 20:42

http://mobacon.de/dokuwiki/ Printed on 2025/10/16 10:09

http://cq.cx/ladder.pl
http://github.com/mobacon/ldmicro
http://mobacon.de/dokuwiki/lib/exe/fetch.php?media=bins:ldmicro_rel.zip
http://mobacon.de/dokuwiki/
http://mobacon.de/dokuwiki/doku.php?id=en:netzer:process

	Ladder Process on Netzer
	Netzer memory organization
	Runtime image
	Register areas (PABs)
	Common PAB
	IO PAB
	Network interface
	Bit variables
	Integer variables

	IDE
	IO PAB Mapping

