2025/10/17 00:00 1/4 Ladder Process on Netzer

Ladder Process on Netzer

The upcoming Release 1.5 will have support for custom computations and serial drivers directly
executed on Netzer. The choosen programming dialect is % Ladder _logic. The IDE for programming
will be Idmicro. This article will cover the progress of the implementations. The final feature set is not
completed yet.

Netzer memory organization

Runtime image

Runtime images are actually interpreted.
The interpreter is entirely written in Assembler for runtime issues.
The reasons for interpretation:

e Easier implementation

e Smaller runtime images

e Security issues (images can be uploaded via Netzer webpage).

* The images can be stored anywhere beyond flash also EEPROM, SD card or SRAM would be
possible.

At the moment, the runtime image is stored in a 2K flash memory area in the bootloader. The
interpreter images stay persistent even during firmware updates. The syntax (opcodes and
parameters) is adopted from Idmicro but is optimized for space and runtime issues.

The translation from Idmicro interpreter code to Netzer opcode files is done via free available IDE
extension from MoBaCon (see below).

The translator also integrates some meta data (project name, modification date, found opcodes, ...)
which is displayed on Netzer web interface after upload.

The prepared image can be uploaded via Netzer web interface or with command line tools like curl.
For custom implementations a preloaded image can be integrated in the firmware image.

After loading or when restarting Netzer the image is always checked for validness and consistency.

Register areas (PABs)

Adopted from Idmicro the runtimes knows about two data types: boolean (Width: Bit) and signed
integer (width: 16 bit).

There are two different register areas (called PAB): common PAB and IO PAB.

MoBaCon - http://mobacon.de/dokuwiki/

https://en.wikipedia.org/wiki/Ladder_logic
https://en.wikipedia.org/wiki/Ladder_logic
http://www.cq.cx/ladder.pl

Last update: 2025/06/11 20:42 en:netzer:process http://mobacon.de/dokuwiki/doku.php?id=en:netzer:process&rev=1345123895

Common PAB

This PAB is a real SRAM area in the Netzer space. The size is 256 bytes. Therefore 128 integer or 2048
bit variables can be stored. The common PAB is used as scratch area. The process has exclusive
access, no other Netzer software module can change the common PAB. Integer and bit variables
share the same address area.

10 PAB

This PAB is a virtual SRAM area. The IO PAB is divided into integer and bit variables area. Unlike in
common PAB integer and bit variables do not share the same address area. For communication
between bit and integer areas a copying via the common PAB can be used.

Command interface

For communication between the command interface and the process a special SRAM area is
introduced. There are 8 integers available in each direction (address 0x10-0x17).

Receiving data from command interface Each time the command interface writes new data, the
corresponding mailbox flag in the bit area is set. The process program can poll for this flag and read
the value afterwards. Reading clears the flag automatically.

Sending data to command interface Writing to one of the integers sends data to the command
interface. Afterwards the mailbox flag is set automatically. After the command interface has fetched
the data, the mailbox flag is cleared. The process should poll mailbox flags to prevent data loss.

Bit variables

Address Access Function Address |Access|Function

0x00 RW 100 latch pin 0x80 RO 100 port pin

0x01 RW |01 latch pin 0x81 RO |01 port pin

0x02 RW 102 latch pin 0x82 RO 102 port pin

0x03 RW |03 latch pin 0x83 RO |03 port pin

0x04 RW 104 latch pin 0x84 RO 104 port pin

0x05 RW |05 latch pin 0x85 RO 05 port pin

0x06 RW TX latch pin 0x86 RO TX port pin

0x07 RW RX latch pin 0x87 RO RX port pin

0x08 RW SPI_CS latch pin ||0x88 RO SPI_CS port pin

0x09 RW SPI_INT latch pin || 0x89 RO SPI_INT port pin

O0x0A RW SPI_CLK latch pin|/0x8A RO SPI_CLK port pin

0x0B RW SPI_MI latch pin ||0x8B RO SPI_MI port pin

0x0C RW SPI_MO latch pin || 0x8C RO SPI_MO port pin
0x8D RO Serial TX FiFo ready
Ox8E RO Serial RX FiFo data pending
Ox8F RO Reserved

http://mobacon.de/dokuwiki/ Printed on 2025/10/17 00:00

2025/10/17 00:00

3/4 Ladder Process on Netzer

Address|Access

Function Address |Access Function

Mailbox state for incoming command

0x90-0x97|RO . .
interface variables

Mailbox state for outgoing command

0x98-0x9F|RO . -
interface variables

Integer variables

Address |Access|/Function

0x00 RW Latch - All 10 port latches in one integer (100 is at bit 0 and so on)
0x01 RW Edge counter (measured at 100)

0x02 RW Edge counter (measured at 101)

0x03 RW Edge counter (measured at 102)

0x04 RW PWM duty cycle / Impulse width (103)

0x05 RW PWM duty cycle / Impulse width (SPI_INT)

0x06 RW Top of serial FiFo (Reading: RX, Writing: TX)

0x07 RW Accessing top of net socket FiFo (Reading: RX, Writing: TX)
0x10-0x17|RW Command interface variables

0x80 RO Ports - All 10 port pins in one integer (100 is at bit 0 and so on)
0x81 RO ADC (104) - Measured value as 10 Bit value

0x82 RO ADC (lO5) - Measured value as 10 Bit value

0x83 RO RTC Seconds

0x84 RO RTC Minutes

0x85 RO RTC Hours

0x86 RO RTC Day of the Week

0x87 RO RTC Day

0x88 RO RTC Month

0x89 RO RTC Year

IDE

‘- Download the IDE

Actually all the features of the IDE which can be compiled into interpretable code can be used.

The ADC PWM and UART stuff is not supported by Idmicro for interpreter targets - but that is no
problem because the Netzer solves this via its IO register set.

For that reason a simple naming convention must be considered.

10 PAB Mapping

Bit variables and integer variables can be mapped directly to 10 PAB integer using the @ operator.

To locate integer variable adc to the IO location of ADC 4 for example simply rename it to adc@01.

MoBaCon - http://mobacon.de/dokuwiki/

http://mobacon.de/dokuwiki/doku.php?id=en:netzer:io#edge_counter_from_version_14_pro
http://mobacon.de/dokuwiki/doku.php?id=en:netzer:io#edge_counter_from_version_14_pro
http://mobacon.de/dokuwiki/doku.php?id=en:netzer:io#edge_counter_from_version_14_pro
http://mobacon.de/dokuwiki/doku.php?id=en:netzer:io#pwm-_and_pulse_generator_from_version_14_pro
http://mobacon.de/dokuwiki/doku.php?id=en:netzer:io#pwm-_and_pulse_generator_from_version_14_pro
http://mobacon.de/dokuwiki/doku.php?id=en:netzer:io#adc_from_version_14_pro
http://mobacon.de/dokuwiki/doku.php?id=en:netzer:io#adc_from_version_14_pro
http://www.cq.cx/dl/ldmicro.exe

Last update: 2025/06/11 20:42 en:netzer:process http://mobacon.de/dokuwiki/doku.php?id=en:netzer:process&rev=1345123895

To which PAB area (bit or integer) the operator finally maps depends on the variable type.

From:
http://mobacon.de/dokuwiki/ - MoBaCon

Permanent link:

Last update: 2025/06/11 20:42

http://mobacon.de/dokuwiki/ Printed on 2025/10/17 00:00

http://mobacon.de/dokuwiki/
http://mobacon.de/dokuwiki/doku.php?id=en:netzer:process&rev=1345123895

	Ladder Process on Netzer
	Netzer memory organization
	Runtime image
	Register areas (PABs)
	Common PAB
	IO PAB
	Command interface
	Bit variables
	Integer variables

	IDE
	IO PAB Mapping

